Manufacturer: Power Electronics

Model #: FS1001CU

Rated Maximum Continuous Output Power: 1000.0 kW

Night Tare Loss: -616 W

Vmin: 500 Vdc Vnom: 575 Vdc Vmax: 800 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 500</td>
<td>95.4</td>
<td>97.0</td>
<td>97.4</td>
<td>97.5</td>
<td>97.3</td>
<td>96.9</td>
<td>97.3</td>
</tr>
<tr>
<td>Vnom 575</td>
<td>95.2</td>
<td>96.8</td>
<td>97.2</td>
<td>97.3</td>
<td>97.1</td>
<td>96.7</td>
<td>97.1</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>94.7</td>
<td>96.2</td>
<td>96.6</td>
<td>96.7</td>
<td>96.6</td>
<td>96.2</td>
<td>96.5</td>
</tr>
</tbody>
</table>

CEC Efficiency of Inverter and MV TP1 Transformer = 97.0%
Manufacturer: Power Electronics

Model #: FS1001CU (330Vac)

Rated Maximum Continuous Output Power: 1000.0 kW
Night Tare Loss: -616 W

Vmin: 500 Vdc Vnom: 575 Vdc Vmax: 800 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 500</td>
<td>98.0</td>
<td>98.3</td>
<td>98.3</td>
<td>98.4</td>
<td>98.4</td>
<td>98.3</td>
</tr>
<tr>
<td>Vnom 575</td>
<td>97.8</td>
<td>98.1</td>
<td>98.1</td>
<td>98.2</td>
<td>98.2</td>
<td>98.0</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>97.2</td>
<td>97.5</td>
<td>97.6</td>
<td>97.6</td>
<td>97.6</td>
<td>97.6</td>
</tr>
</tbody>
</table>

Inverter Efficiency only = 98.0%

1000KVA TP1 MV Transformer Efficiency

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 500</td>
<td>97.35</td>
<td>98.69</td>
<td>99.03</td>
<td>99.1</td>
<td>98.9</td>
<td>98.59</td>
</tr>
<tr>
<td>Vnom 575</td>
<td>97.35</td>
<td>98.69</td>
<td>99.03</td>
<td>99.1</td>
<td>98.9</td>
<td>98.59</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>97.35</td>
<td>98.69</td>
<td>99.03</td>
<td>99.1</td>
<td>98.9</td>
<td>98.59</td>
</tr>
</tbody>
</table>
Inverter Efficiency Data

Minimum of 5 samples required

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(% of rated)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(%)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(%)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(%)</td>
<td>(W)</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>98015.1</td>
<td>500.2</td>
<td>98.0</td>
<td>98285.9</td>
<td>500.2</td>
<td>98.0</td>
<td>98466.5</td>
<td>500.2</td>
<td>98.0</td>
<td>98207.9</td>
</tr>
<tr>
<td>20% Vmin</td>
<td>207784.0</td>
<td>500.0</td>
<td>98.0</td>
<td>208320.7</td>
<td>500.0</td>
<td>98.0</td>
<td>208397.3</td>
<td>500.0</td>
<td>98.0</td>
<td>208694.3</td>
</tr>
<tr>
<td>30% Vmin</td>
<td>302159.3</td>
<td>500.0</td>
<td>98.0</td>
<td>302869.7</td>
<td>500.0</td>
<td>98.0</td>
<td>302993.0</td>
<td>500.0</td>
<td>98.0</td>
<td>302929.7</td>
</tr>
<tr>
<td>50% Vmin</td>
<td>508257.0</td>
<td>500.4</td>
<td>98.0</td>
<td>508466.0</td>
<td>500.4</td>
<td>98.0</td>
<td>508509.7</td>
<td>500.4</td>
<td>98.0</td>
<td>508430.0</td>
</tr>
<tr>
<td>75% Vmin</td>
<td>755567.3</td>
<td>500.8</td>
<td>98.0</td>
<td>755745.3</td>
<td>500.8</td>
<td>98.0</td>
<td>755745.3</td>
<td>500.8</td>
<td>98.0</td>
<td>755672.7</td>
</tr>
<tr>
<td>100% Vmin</td>
<td>1008190.0</td>
<td>500.2</td>
<td>98.0</td>
<td>1007080.0</td>
<td>500.2</td>
<td>98.0</td>
<td>1007080.0</td>
<td>500.2</td>
<td>98.0</td>
<td>1007493.3</td>
</tr>
<tr>
<td>10% Vnom</td>
<td>98440.3</td>
<td>575.7</td>
<td>97.8</td>
<td>98418.1</td>
<td>575.7</td>
<td>97.8</td>
<td>98176.6</td>
<td>575.7</td>
<td>97.8</td>
<td>98151.6</td>
</tr>
<tr>
<td>20% Vnom</td>
<td>207803.5</td>
<td>575.5</td>
<td>98.0</td>
<td>208070.7</td>
<td>575.5</td>
<td>98.0</td>
<td>208102.7</td>
<td>575.5</td>
<td>98.0</td>
<td>208102.7</td>
</tr>
<tr>
<td>30% Vnom</td>
<td>302854.3</td>
<td>575.4</td>
<td>98.0</td>
<td>302773.3</td>
<td>575.4</td>
<td>98.0</td>
<td>302773.3</td>
<td>575.4</td>
<td>98.0</td>
<td>302773.3</td>
</tr>
<tr>
<td>50% Vnom</td>
<td>507089.0</td>
<td>575.1</td>
<td>98.0</td>
<td>507803.0</td>
<td>575.1</td>
<td>98.0</td>
<td>507803.0</td>
<td>575.1</td>
<td>98.0</td>
<td>507803.0</td>
</tr>
<tr>
<td>75% Vnom</td>
<td>754114.0</td>
<td>575.5</td>
<td>98.0</td>
<td>754558.7</td>
<td>575.5</td>
<td>98.0</td>
<td>754558.7</td>
<td>575.5</td>
<td>98.0</td>
<td>754558.7</td>
</tr>
<tr>
<td>100% Vnom</td>
<td>1006643.4</td>
<td>575.1</td>
<td>98.0</td>
<td>1006366.7</td>
<td>575.1</td>
<td>98.0</td>
<td>1006366.7</td>
<td>575.1</td>
<td>98.0</td>
<td>1006366.7</td>
</tr>
<tr>
<td>10% Vmax</td>
<td>97983.7</td>
<td>800.8</td>
<td>97.3</td>
<td>98044.4</td>
<td>800.8</td>
<td>97.3</td>
<td>98023.6</td>
<td>800.8</td>
<td>97.3</td>
<td>98022.8</td>
</tr>
<tr>
<td>20% Vmax</td>
<td>206332.7</td>
<td>801.7</td>
<td>97.5</td>
<td>206360.7</td>
<td>801.7</td>
<td>97.5</td>
<td>206331.7</td>
<td>801.7</td>
<td>97.5</td>
<td>206331.7</td>
</tr>
<tr>
<td>30% Vmax</td>
<td>301728.3</td>
<td>800.7</td>
<td>97.6</td>
<td>301821.7</td>
<td>800.7</td>
<td>97.6</td>
<td>301821.7</td>
<td>800.7</td>
<td>97.6</td>
<td>301821.7</td>
</tr>
<tr>
<td>50% Vmax</td>
<td>505175.7</td>
<td>800.4</td>
<td>97.6</td>
<td>505471.0</td>
<td>800.4</td>
<td>97.6</td>
<td>505471.0</td>
<td>800.4</td>
<td>97.6</td>
<td>505471.0</td>
</tr>
<tr>
<td>75% Vmax</td>
<td>751594.0</td>
<td>800.2</td>
<td>97.6</td>
<td>752094.3</td>
<td>800.2</td>
<td>97.6</td>
<td>752094.3</td>
<td>800.2</td>
<td>97.6</td>
<td>752094.3</td>
</tr>
<tr>
<td>100% Vmax</td>
<td>1003510.0</td>
<td>800.9</td>
<td>97.5</td>
<td>1002483.3</td>
<td>801.0</td>
<td>97.5</td>
<td>1002483.3</td>
<td>801.0</td>
<td>97.5</td>
<td>1002483.3</td>
</tr>
</tbody>
</table>