Manufacturer: Power Electronics
Model #: FS2200CU(440Vac)

Rated Maximum Continuous Output Power: 2200.0 kW
Night Tare Loss: -396 W

Vmin: 642 Vdc
Vnom: 690 Vdc
Vmax: 800 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 642</td>
<td>95.8</td>
<td>97.2</td>
<td>97.6</td>
<td>97.6</td>
<td>97.3</td>
<td>96.7</td>
<td>97.3</td>
</tr>
<tr>
<td>Vnom 690</td>
<td>95.7</td>
<td>97.1</td>
<td>97.5</td>
<td>97.5</td>
<td>97.2</td>
<td>96.7</td>
<td>97.2</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>95.5</td>
<td>97.0</td>
<td>97.3</td>
<td>97.4</td>
<td>97.1</td>
<td>96.5</td>
<td>97.1</td>
</tr>
</tbody>
</table>

CEC Efficiency of Inverter and MV TP1 Transformer = 97.0%

![Graph showing Efficiency vs. % of Rated Output Power]
Manufacturer: Power Electronics

Model #: FS2200CU (440Vac)

Rated Maximum Continuous Output Power: 2200.0 kW
Night Tare Loss: -396 W

Vmin: 642 Vdc
Vnom: 690 Vdc
Vmax: 800 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 642</td>
<td>98.3</td>
<td>98.4</td>
<td>98.5</td>
<td>98.4</td>
<td>98.3</td>
<td>98.0</td>
<td>98.3</td>
</tr>
<tr>
<td>Vnom 690</td>
<td>98.2</td>
<td>98.3</td>
<td>98.4</td>
<td>98.3</td>
<td>98.2</td>
<td>97.9</td>
<td>98.2</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>98.0</td>
<td>98.1</td>
<td>98.2</td>
<td>98.1</td>
<td>98.0</td>
<td>97.8</td>
<td>98.1</td>
</tr>
</tbody>
</table>

Inverter Efficiency only = 98.0%

Efficiency, %

% of Rated Output Power

2200KVA TP1 MV Transformer Efficiency

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 642</td>
<td>97.45</td>
<td>98.79</td>
<td>99.13</td>
<td>99.20</td>
<td>99.00</td>
<td>98.69</td>
<td>98.97</td>
</tr>
<tr>
<td>Vnom 690</td>
<td>97.45</td>
<td>98.79</td>
<td>99.13</td>
<td>99.20</td>
<td>99.00</td>
<td>98.69</td>
<td>98.97</td>
</tr>
<tr>
<td>Vmax 800</td>
<td>97.45</td>
<td>98.79</td>
<td>99.13</td>
<td>99.20</td>
<td>99.00</td>
<td>98.69</td>
<td>98.97</td>
</tr>
</tbody>
</table>
Inverter Efficiency Data

Minimum of 5 samples required

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(% of rated)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
<td>(Vdc)</td>
</tr>
<tr>
<td>10%</td>
<td>Vmin</td>
<td>211918.7</td>
<td>643.1</td>
<td>98.3</td>
<td>211905.3</td>
<td>643.1</td>
<td>98.3</td>
<td>213005.3</td>
<td>643.1</td>
<td>98.3</td>
</tr>
<tr>
<td>20%</td>
<td>Vmin</td>
<td>442760.0</td>
<td>642.9</td>
<td>98.4</td>
<td>443483.3</td>
<td>642.8</td>
<td>98.4</td>
<td>444383.7</td>
<td>642.8</td>
<td>98.4</td>
</tr>
<tr>
<td>30%</td>
<td>Vmin</td>
<td>666573.7</td>
<td>642.4</td>
<td>98.5</td>
<td>669831.0</td>
<td>642.4</td>
<td>98.5</td>
<td>669517.3</td>
<td>642.4</td>
<td>98.5</td>
</tr>
<tr>
<td>50%</td>
<td>Vmin</td>
<td>1128956.7</td>
<td>642.1</td>
<td>98.4</td>
<td>1129773.7</td>
<td>642.1</td>
<td>98.4</td>
<td>1191426.7</td>
<td>642.1</td>
<td>98.4</td>
</tr>
<tr>
<td>70%</td>
<td>Vmin</td>
<td>1678346.7</td>
<td>642.0</td>
<td>98.3</td>
<td>1676813.3</td>
<td>642.0</td>
<td>98.3</td>
<td>167983.3</td>
<td>642.0</td>
<td>98.3</td>
</tr>
<tr>
<td>100%</td>
<td>Vmin</td>
<td>2221216.7</td>
<td>642.7</td>
<td>98.0</td>
<td>2218463.3</td>
<td>642.8</td>
<td>98.0</td>
<td>2218986.7</td>
<td>642.7</td>
<td>98.0</td>
</tr>
<tr>
<td>10%</td>
<td>Vnom</td>
<td>212567.3</td>
<td>691.2</td>
<td>98.3</td>
<td>212323.3</td>
<td>691.2</td>
<td>98.3</td>
<td>212456.7</td>
<td>691.2</td>
<td>98.3</td>
</tr>
<tr>
<td>20%</td>
<td>Vnom</td>
<td>443033.3</td>
<td>691.3</td>
<td>98.2</td>
<td>443522.3</td>
<td>691.3</td>
<td>98.2</td>
<td>442967.0</td>
<td>691.3</td>
<td>98.2</td>
</tr>
<tr>
<td>30%</td>
<td>Vnom</td>
<td>670851.0</td>
<td>690.7</td>
<td>98.4</td>
<td>670549.7</td>
<td>690.7</td>
<td>98.4</td>
<td>667110.7</td>
<td>690.7</td>
<td>98.4</td>
</tr>
<tr>
<td>50%</td>
<td>Vnom</td>
<td>1129690.0</td>
<td>690.6</td>
<td>98.3</td>
<td>1126253.3</td>
<td>690.7</td>
<td>98.3</td>
<td>1120900.0</td>
<td>690.6</td>
<td>98.3</td>
</tr>
<tr>
<td>75%</td>
<td>Vnom</td>
<td>1671146.7</td>
<td>690.6</td>
<td>98.2</td>
<td>1675406.7</td>
<td>690.5</td>
<td>98.2</td>
<td>1673156.7</td>
<td>690.6</td>
<td>98.2</td>
</tr>
<tr>
<td>100%</td>
<td>Vnom</td>
<td>2221756.7</td>
<td>690.2</td>
<td>97.9</td>
<td>2213876.7</td>
<td>690.3</td>
<td>97.9</td>
<td>2217253.3</td>
<td>690.3</td>
<td>97.9</td>
</tr>
<tr>
<td>10%</td>
<td>Vmax</td>
<td>212091.0</td>
<td>801.6</td>
<td>98.0</td>
<td>211859.7</td>
<td>801.6</td>
<td>98.0</td>
<td>218111.3</td>
<td>801.7</td>
<td>98.0</td>
</tr>
<tr>
<td>20%</td>
<td>Vmax</td>
<td>439028.0</td>
<td>801.3</td>
<td>98.1</td>
<td>440031.0</td>
<td>801.3</td>
<td>98.1</td>
<td>441872.7</td>
<td>801.3</td>
<td>98.1</td>
</tr>
<tr>
<td>30%</td>
<td>Vmax</td>
<td>668118.3</td>
<td>801.0</td>
<td>98.2</td>
<td>668116.7</td>
<td>801.0</td>
<td>98.2</td>
<td>669585.7</td>
<td>801.0</td>
<td>98.2</td>
</tr>
<tr>
<td>50%</td>
<td>Vmax</td>
<td>1116456.7</td>
<td>801.0</td>
<td>98.1</td>
<td>1125743.3</td>
<td>801.0</td>
<td>98.1</td>
<td>1122433.3</td>
<td>801.0</td>
<td>98.1</td>
</tr>
<tr>
<td>75%</td>
<td>Vmax</td>
<td>1674916.7</td>
<td>800.9</td>
<td>97.8</td>
<td>1670213.3</td>
<td>801.0</td>
<td>97.8</td>
<td>1667553.3</td>
<td>801.0</td>
<td>97.8</td>
</tr>
<tr>
<td>100%</td>
<td>Vmax</td>
<td>2216543.3</td>
<td>800.8</td>
<td>97.8</td>
<td>221030.0</td>
<td>800.8</td>
<td>97.8</td>
<td>2218926.7</td>
<td>800.8</td>
<td>97.8</td>
</tr>
</tbody>
</table>