Manufacturer: Solectria Renewables, LLC
Model #: PVI 5000S, PVI 5000S-P (240Vac)

Rated Maximum Continuous Output Power: 5.01 kW Night Tare Loss: 0.47 W

<table>
<thead>
<tr>
<th>Vmin</th>
<th>230 Vdc</th>
<th>Vnom</th>
<th>275 Vdc</th>
<th>Vmax</th>
<th>400 Vdc</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 230</td>
<td>93.9</td>
<td>96.1</td>
<td>96.6</td>
<td>96.7</td>
<td>96.4</td>
<td>95.7</td>
</tr>
<tr>
<td>Vnom 275</td>
<td>92.7</td>
<td>95.8</td>
<td>96.4</td>
<td>96.5</td>
<td>96.2</td>
<td>95.6</td>
</tr>
<tr>
<td>Vmax 400</td>
<td>91.2</td>
<td>94.7</td>
<td>95.7</td>
<td>96.1</td>
<td>95.9</td>
<td>95.4</td>
</tr>
</tbody>
</table>

CEC Efficiency = 96.0%
Inverter Efficiency Data

Minimum of 5 samples required

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of rated</td>
<td>Output Power</td>
<td>Input Voltage</td>
<td>Output Power</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.49</td>
<td>229.55</td>
<td>93.92</td>
<td>0.49</td>
<td>229.54</td>
<td>93.93</td>
</tr>
<tr>
<td>10% Vnom</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.48</td>
<td>274.76</td>
<td>92.72</td>
<td>0.48</td>
<td>274.77</td>
<td>92.73</td>
</tr>
<tr>
<td>10% Vmax</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.47</td>
<td>399.82</td>
<td>91.17</td>
<td>0.47</td>
<td>399.81</td>
<td>91.17</td>
</tr>
<tr>
<td>100% Vmin</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.05</td>
<td>230.28</td>
<td>95.74</td>
<td>5.05</td>
<td>230.27</td>
<td>95.72</td>
</tr>
<tr>
<td>100% Vnom</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.04</td>
<td>275.24</td>
<td>95.58</td>
<td>5.04</td>
<td>275.24</td>
<td>95.57</td>
</tr>
<tr>
<td>100% Vmax</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of rated</td>
<td>Output Power</td>
<td>Input Voltage</td>
<td>Output Power</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.47</td>
<td>399.82</td>
<td>91.17</td>
<td>0.47</td>
<td>399.81</td>
<td>91.17</td>
</tr>
<tr>
<td>100% Vmin</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
</tr>
<tr>
<td>100% Vnom</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.04</td>
<td>275.24</td>
<td>95.58</td>
<td>5.04</td>
<td>275.24</td>
<td>95.57</td>
</tr>
<tr>
<td>100% Vmax</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(Vdc)</td>
<td>(W)</td>
<td>(%)</td>
</tr>
<tr>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
<td>5.03</td>
<td>400.15</td>
<td>95.39</td>
</tr>
</tbody>
</table>